首页> 外文OA文献 >Balancing Exploration and Exploitation: A New Algorithm for Active Machine Learning
【2h】

Balancing Exploration and Exploitation: A New Algorithm for Active Machine Learning

机译:平衡探索与开发:一种新的主​​动机器学习算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.
机译:当有大量未标记的示例可用并且为它们获取标签的成本很高时(例如,需要咨询人类专家),将使用主动机器学习算法。许多传统的主动学习算法专注于完善决策边界,但以探索当前假设错误分类的新区域为代价。我们提出了一种新的主​​动学习算法,该算法通过动态调整每一步的探索概率来平衡探索与决策边界的平衡。我们的实验结果表明,在需要大量探索的数据集上,性能得到了改善,同时在不需要数据集的数据集上仍具有竞争力。我们的算法还显示出显着的噪声容限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号